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1. Introduction

Recent studies seeking to embed inflation in string theory in the context of Type IIB flux

compactifications [1 – 10] have revealed the importance and the delicate nature of moduli

stabilisation: moduli need to be stabilised with a large enough mass to avoid Equivalence

Principle violations while still allowing sufficient flat regions in the potential for the onset

of inflation. This suggests the possibility that a successful realization of inflation in string

theory might place interesting constraints on the moduli of the compact manifold. With the

wealth of possible string compactifications, such potential phenomenological constraints on

the parameter space are worthy of study; conversely with the wealth of proposals in the

literature for instantiating inflation, any restrictions curtailing the possibilities similarly

deserves attention.

In this note, we focus on the specific proposal of racetrack inflation in string theory [7],

which has been studied in the large radius limit of Calabi-Yau compactifications. An inter-

esting question is whether this approach to inflation can be realized as we move to smaller

radii, or whether corrections that contribute away from large radius might significantly

affect the analysis. Naively, one might anticipate that so long as we remain at a radius

large enough to justify perturbation theory, such corrections would have little relevance1 .

The requirement of successful inflation, however, is far more constraining than perturba-

tive reliability and hence even at moderately large radii, perturbative corrections can be

important to the cosmological analysis.

1We thank P. Berglund for bringing to our attention [8] in which the authors find that stringy corrections

are relevant even at large volumes in agreement with the results presented in this note.
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Specificially, we study the effect that the leading perturbative corrections to the Kähler

potential have on cosmological studies using the supergravity scalar F-term potential. For

the cases we study, such corrections can undermine the onset of inflation in a region of

moduli space where classical supergravity analysis concludes inflation should occur. In

some cases, it may be possible to choose a new set of parameters to yield inflationary

dynamics; even so, the parameters would generally be unrelated to those studied in the

literature, and additionally, the choice would depend on the specific Calabi-Yau on which

one compactifies as well as the string coupling constant gs. It would be interesting to

include α′ corrections at the outset in any search for inflationary potentials as this may

provide a tighter handle on the available regions in parameter space in which one could

stabilise the moduli and find inflation.

This note is organised as follows. In section 2 we quote the result for the corrected

Kähler potential and illustrate that the supersymmetric minimum is insensitive to this

correction. By using the corrected Kähler potential, in section 3, we show that the no-scale

structure is broken and a potential for the volume modulus is generated. In order to be

self-contained, section 4 is devoted to a brief review of the relevant results from racetrack

inflation [7]. The slow roll parameters are computed for the case of interest. In section 5 we

explore the effect of the corrections on volume stabilisation and on the conditions necessary

for inflation. In addition, we choose specific compactifications to study and for each find the

minimum value for the volume modulus that ensures α′ corrections can be safely ignored.

Our results indicate that such minima are generally deep in the perturbative domain and

hence α′ corrections can be relevant even at reasonably large volume.

2. The corrected Kähler potential

The leading perturbative corrections to the Kähler potential of the volume modulus have

been computed in [11] using the results of [12 – 16]. With 2πα′ = 1 [17], the Kähler potential

including α′ corrections is

K = −2 log(V̂ +
1

2
ξe−3/2φ), (2.1)

where ξ = −1
2χζ(3) and χ is the Euler number of the compactification manifold. To

facilitate comparisons with earlier results, we work in the Einstein frame; this is the origin

of the dilaton dependance of the correction. While the result holds for any number of Kähler

moduli, we will restrict ourselves to a single Kähler modulus, T . As such the Calabi-Yau

volume, V̂, is related to the volume modulus, T , by V̂ = (T + T )3/2. In keeping with [2]

and [7], we treat the complex structure moduli and the dilaton as having been stabilized

prior to the fixing of the volume modulus. It is clear from the above, however, that one

should include stringy corrections prior to this fixing as all fields should be stabilized using

the corrected Kähler potential. At the SUSY minimum

DiW = ∂iW + W∂iK = 0, (2.2)

where i runs over the complex structure moduli and the dilaton. This should be contrasted

with

D
(0)
i W = ∂iW + W∂iK

(0) = 0, (2.3)
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where K(0) is the tree level Kähler potential. Fixing moduli using (2) rather than (1) is

expected to change the specific values where the complex structure moduli and the dilaton

are fixed but not the systematics. Hence the correction term can be treated as a constant

for any specific Calabi-Yau. Henceforth, we set L = −1
4χζ(3)e−3/2φ = −1

4χζ(3)g
−3/2
s .

At the SUSY minimum, the potential is insensitive to the α′ corrections as one would

expect from non-renormalisation theorem arguments [18]. It is instructive to see how this

happens explicitly here. At the SUSY minimum

DT W = 0 → W = −∂TW

∂T K
= −(∂T W )((T + T )3/2 + L)

(−3(T + T )1/2)
. (2.4)

The scalar potential, V = eK(gTT DT WDT W − 3|W |2) at the minimum is

VSUSY = −3eK |W |2

= −3
(

(T + T )3/2 + L
)−2

((T + T )3/2 + L)2
(

(∂T W )2

(9(T + T )

)

= − (∂T W )2

3(T + T )
. (2.5)

We see from this how the correction term drops out in the final result. Of course, this will

no longer be the case away from the SUSY minimum.

3. Breaking the no-scale structure

The classical supergravity potential displays a no-scale structure which makes fixing the

volume modulus more subtle. In [2] this fixing was achieved by including non-perturbative

corrections to the superpotential that break the no-scale structure and generate a potential

for T . One can, however, break the no-scale structure in other ways. In particular, α′

corrections to the Kähler potential break this structure and generate a correction to the

supergravity potential dependant on T and proportional to the Euler number of the internal

manifold. With the corrected Kähler potential and its metric, gTT = [3(T +T )−3/2L(T +

T )1/2]/[((T + T )3/2 + L)2] inserted into the supergravity potential

VF = eK
(

gTT DT WDT W − 3|W |2
)

(3.1)

it can be seen that the two terms no longer cancel, and a potential for the volume modulus,

T , is generated. Since we only consider tree level contributions to the superpotential arising

from the fluxes, W = W0 here we find

VT =
3LW 2

0

(2(T + T )3/2 − L)
. (3.2)

As expected, the L = 0 limit gives the expected VT = 0 result. Alone, however, the stringy

corrections to the Kähler potential cannot stabilise the volume modulus as the potential

exhibits runaway behaviour [11].
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4. Review of racetrack inflation

From a cosmological standpoint, simply finding a potential for the volume modulus is not

sufficient. One needs to find a minimum where T can be stabilised and, importantly, with

a potential that exhibits a sufficiently flat region along which inflation can occur.

In KKLT [2], the no-scale structure is broken by adding non-perturbative corrections to

the superpotential and the resulting AdS minimum is subsequently lifted to a dS minimum

by adding a stack of antibranes thus breaking supersymmetry. In [7], the authors include

additional non-perturbative potentials of the modified racetrack type and find saddle point

regions in the potential where slow-roll inflation can take place. In this sense the authors

of [7] have revived the old ideas of modular inflation [19, 20] with a flat enough potential.

In the case of [7] the inflaton will be Y = =(T ).

The superpotential considered includes non-perturbative corrections and is assumed

to have the modified racetrack form,

W = W0 + Ae−aT + B e−bT , (4.1)

where W0 is the effective superpotential as a function of all the complex structure moduli

and the dilaton, all assumed to have already been stabilized. As in the KKLT scenario,

W0 is required to be small (W0 . 10−4). This is achieved by discretely tuning fluxes.

The exponential terms are expected to arise from gaugino condensation in a theory with

a product gauge group [21]. For example, for an SU(N) × SU(M) gauge group one finds

a = 2π/M and b = 2π/N . A and B are expected to be small in Planck units [21]. The

scalar potential receives contributions from two terms2

V = VF + δV . (4.2)

The first is the standard N = 1 supergravity F-term potential, (6), [23] and the second

term, δV , is induced by the tension of the anti-D3 branes added to break supersymmetry

and lift the potential from an AdS to a dS minimum [2] . Conveniently, the introduction

of the anti-branes does not introduce extra translational moduli as their position is fixed

by the fluxes. Their contribution is positive definitive and is of the form [25]

δV =
E

Xα
, (4.3)

where the coefficient E depends on the the tension of the branes T3, the number of branes

and the warp factor. For this reason one can discretely tune E and the supersymmetry

breaking in the system but not to arbitrary precision. In [7] E is tuned to set the global

minimum at the Minkowski vacuum, V = 0. In [2] a metastable de Sitter solution is found

by tuning E so that the minimum is dS with a small cosmological constant. Depending

on the location of the anti-branes one finds different results for the exponent α. If the

anti-branes are situated at the bottom of the throat in the region of maximum warping

2In [22] an inflationary potential is claimed to be found using α′ corrections instead of an uplifting

potential term.
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Figure 1: Original Racetrack potential corresponding to L = 0, (rescaled by 1016)

one finds α = 2. On the other hand if the anti-branes sit in the unwarped region α = 3 [7].

Since the former is energetically favoured we set α = 2 henceforth.

The shape of the resulting potential is highly sensitive to the parameter values. Includ-

ing stringy corrections essentially adds a new parameter and, we show below, this added

term has the capacity to destabilise some of the key features found in [7]. The following set

of parameters were chosen by [7] to illustrate the presence of a saddle point region where

X = <(T ) has a minimum and can thus be stabilised, and Y = =(T ) has a sufficently flat

maximum to ensure that a field starting at the saddle point and rolling in the Y direction

will yield inflation.

A =
1

50
, B =

−35

1000
, a =

2π

100
, B =

2π

90
, W0 =

−1

25000
, E = 4.14668×10−12 (4.4)

The potential has a saddle point at

Xsad = 123.216, Ysad = 0, Vsaddle = 1.655 × 10−16 (4.5)

and minima at

Xmin = 96.130, Ymin = ±22.146 (4.6)

In figure 2, a plot of the Y = 0 slice of the potential is included to illustrate the crucial

minimum in the X direction.

4.1 Computing slow roll parameters

We illustrate the claim that one can get slow roll inflation near the saddle point for the

racetrack potential. For successful slow-roll inflation the following conditions need to be

– 5 –
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Figure 2: Y = 0 slice of original Racetrack potential for L = 0, (rescaled by 1016).

met (in units where MP = 1)3

ε ≡ 1

2

(V ′

V

)2
¿ 1 , η ≡ V ′′

V
¿ 1 , (4.7)

where the primes refer to derivatives with respect to a canonically normalised scalar field.

Since V ′ = 0 at the saddle point, ε is exactly zero. To compute η one must take account

of the non-canonical kinetic term for the inflaton, Y . It is useful to derive η in general so

that the result can be used when we include the correction term. Specifically the kinetic

term is

Lkin = 2gTT

1

2
(∂µX∂µX + ∂µY ∂µY ), (4.8)

where the factor of 2 is a result of the relation between X and T . Taking this normalisation

into account yields

η =
V ′′

V
→ η =

V ′′

2gTT V
. (4.9)

For the large radius case, gTT = 3/(4X2), resulting in η = [2X2V ′′]/[3V ] with X

evaluated at the saddle point and we find.

ηsaddle = −0.0061 . (4.10)

This agrees with [7].4 It is now a simple matter to include the effect of the loop term

and study its effect on η. Specifically

η =
1

2gTT

V ′′

V

=
V ′′((T + T )3/2 + L)2

3V (2(T + T ) − L(T + T )1/2)

=
V ′′((2X)3/2 + L)2

3V (4X − L(2X)1/2)
, (4.11)

3We thank L. McAllister for pointing out a typo in a previous version.
4We thank J.J. Blanco Pillado for allowing us to compare results exactly.
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Figure 3: Y = 0 slice of the potential for L = 60.

where, in the above expressions V also has L dependance.

5. Effect of α
′ corrections

There are three features required of the potential, all of which were met in [7].

• The global minimum must be dS or Minkowski. This step is achieved by including the

δV term [2]. One can tune the value of the potential at the minimum by discretely

tuning E.

• A de Sitter saddle point with a minimum in the X direction.

• A sufficiently flat maximum in the Y direction to attain a cosmologically significant

duration of slow roll inflation.

We find, for any reasonable value of L, the stringy correction spoils the second and

third conditions. By adjusting the parameters it may then be possible to re-establish a

minimum, but it is difficult to do so while keeping η sufficiently small. Considering the

amount of fine-tuning required to find slow roll inflation near the saddle point, this is not

unexpected. The correction we are considering amounts to a new, non-tunable term not

previously considered in this context. Since some of the parameters in the model can only

be fine tuned discretely, it may be that for any specific example, one cannot find regions

conducive to inflation.

This possibility can be illustrated by plotting the cross section through the saddle

point for non-zero L. Here we choose L = 60 which corresponds to the quintic, χ = −200,

and string coupling gs ≈ 1.

Typically, though, we would fix the dilaton at a value gs ¿ 1, in which case L À 60.

This would make it even harder to re-establish stabilisation. Notice that this destabilisation

occurs at large radius, one where we would naively expect to trust a classical supergravity

analysis. Notice too that the effect is sensitive to the sign of χ. For the mirror quintic,

– 7 –
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Figure 4: Y = 0 slice of the potential for L = −60. Note the enhancement of the minimum.

χ = 200 → L = −60, we find that stabilisation in the X direction is enhanced. However

the conditions for inflation are still destroyed since at the saddle point we find η = −2.46.

6. How large is large enough?

In the previous section, we saw that α′ corrections to the Kähler potential play a significant

role, even at values of the volume modulus around 100MP , where one would generally

expect such corrections to be irrelevant. At what radius, then, do these effects become

negligible for determining the onset of inflation? The answer, of course, depends on the

specific compactification manifold-in particular its Euler number, χ, and on the value of gs.

Below we give some examples. To aid our analysis, we take advantage of a scaling symmetry

which the racetrack potential obeys in the absence of the correction but which the correction

term spoils. Without the correction, this symmetry ensures that the potential and its

essential properties, such as slope and slow-roll parameters, remain the same regardless of

the location in X of the saddle point. Explicitly, the rescaling is [7]

a → a

λ
, b → b

λ
, E → λ2E (6.1)

with

A → λ3/2A, B → λ3/2B, W0 → λ3/2W0 (6.2)

X → λX, Y → λY . (6.3)

With the inclusion of the α′ corrections, this symmetry is broken but still provides a

convenient means for finding where the large radius conclusions are spoiled.

In the following table we have evaluated η for a range of values of λ and L and compared

the classical and α′ corrected results.5 The values of L we have chosen correspond to the

5It is worth noting that not all these examples may be realised with a single Kähler modulus. For
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L = 0 L = 2 L = 60 L =−60 L = 2500

λ Xsaddle η Xsaddle η Xsaddle η Xsaddle η Xsaddle η

100000 12321632 −0.0061 12321632 −0.0061 12321632 −0.0061 12321632 −0.0061 12321632 −0.0061

4000 492865.3 −0.0061 492865.3 −0.0061 492865.3 −0.0061 492865.2 −0.0061 492867.0 −0.0056

400 49286.53 −0.0061 49286.53 −0.0061 49286.66 −0.0057 49286.40 −0.0064 49291.92 0.0085

80 9857.305 −0.0061 9857.315 −0.0059 9857.594 −0.0022 9857.017 −0.0099 9869.600 0.1582

50 6160.816 −0.0061 6160.828 −0.0058 6161.182 0.0018 6160.451 −0.0140 6176.740 0.3310

20 2464.326 −0.0061 2464.346 −0.0050 2464.906 0.0252 2463.751 −0.0372 2494.857 1.4940

10 1232.163 −0.0061 1232.190 −0.0032 1232.989 0.0827 1231.355 −0.0935 no min −

2 246.4326 −0.0061 246.4938 0.0268 248.5787 1.0784 244.7928 −0.9355 no min −

1 123.2163 −0.0061 123.3035 0.0875 no min − 121.1970 −2.4635 no min −

1/2 61.60816 −0.0061 61.73434 0.2622 no min − 59.34719 −6.3833 no min −

1/4 30.80408 −0.0061 30.99693 0.7882 no min − 28.45786 −18.4781 no min −

1/8 15.40204 −0.0061 no min − no min − 12.81586 37.7937 no min −

Table 1: Effect of α′ corrections on stabilisation and η when we move the minimum using λ.

following cases. L = 2 corresponds to χ = −6 and gs ≈ 0.9; this represents a value of

L on the low end of physical interest. L = 60 and L = −60 correspond to the quintic

and the mirror quintic respectively, with gs ≈ 1. L = 2500 corresponds to the quintic and

gs ≈ 1/12.

Notice that for reasonable values of L, say <(T ) ∼ 107 in Planck units with 2πα′ = 1,

the α′ corrections become negligible and supergravity analysis is both qualitatively and

quantitatively unaffected. However, at smaller values of <(T )-but large enough for pertur-

bation theory to be justified-the corrections not only change the details of the inflationary

model but ultimately prevent inflation from initiating. For these models, other choices of

parameters might well lead to inflation, but a lowest order calculation is no longer adequate,

even though the dimensionless expansion parameter can be on the order of α′/
√

T ∼ 10−2.

7. Conclusions

In this note we have studied the effect that stringy corrections to the Kähler potential have

on Kähler modulus stabilisation and on racetrack inflation. We find that α′ corrections

can play a significant role even at values of the volume modulus within the perturbative

realm. Explicit calculations show that the minimum radius beyond which such corrections

are irrelevant depends sensitively on the compactification manifold and on the value of gs

(set by the fluxes). In a given model, successful stabilization and inflation may require a

sufficiently large compactification manifold. Turning this around, we expect fluxes to fix

W0 and gs, the value of the cosmological constant should fix E, and fundamental physics

should fix the parameters of the non-perturbative superpotential. Requiring successful

moduli stabilization and inflation may then place restrictions on the Euler number of the

compactification.
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